
Frontiers in Medicine 01 frontiersin.org

Artificial intelligence and skin 
cancer
Maria L. Wei 1,2*, Mikio Tada 3, Alexandra So 4 and Rodrigo Torres 2

1 Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States, 
2 Dermatology Service, San Francisco VA Health Care System, San Francisco, CA, United States, 
3 Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, 
United States, 4 School of Medicine, University of California, San Francisco, San Francisco, CA, 
United States

Artificial intelligence is poised to rapidly reshape many fields, including that of skin 
cancer screening and diagnosis, both as a disruptive and assistive technology. 
Together with the collection and availability of large medical data sets, artificial 
intelligence will become a powerful tool that can be  leveraged by physicians 
in their diagnoses and treatment plans for patients. This comprehensive review 
focuses on current progress toward AI applications for patients, primary care 
providers, dermatologists, and dermatopathologists, explores the diverse 
applications of image and molecular processing for skin cancer, and highlights 
AI’s potential for patient self-screening and improving diagnostic accuracy for 
non-dermatologists. We additionally delve into the challenges and barriers to 
clinical implementation, paths forward for implementation and areas of active 
research.
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Introduction

Artificial intelligence (AI) stands at the forefront of technological innovation and has 
permeated into almost every industry and field. In dermatology, significant progress has been 
made toward the application of AI in skin cancer screening and diagnosis. Notably, a milestone 
that marked the era of modern artificial intelligence in dermatology was the demonstration of 
skin cancer classification abilities by deep learning convolutional neural networks (CNNs), 
which was on par with the performance of board-certified dermatologists (1). This CNN was 
trained on a dataset that was two orders of magnitude greater than those previously utilized. 
The dermatologist-level classification ability has since been experimentally validated by other 
papers (2, 3). Recent progress in the field of AI enables models to not only analyze image data 
but also integrate clinical information, including patient demographics and past medical 
history (4–6). Advancements allow for the simultaneous evaluation and identification of 
multiple lesions from wide-field images (7, 8). Moreover, models can now gain information 
from whole slide images without having to use costly pixel-wise human-made annotations (9). 
Despite these advancements, research has found that AI models lack robustness to simple data 
variations, have proven inadequate in real-world dermatologic practice performance, and that 
barriers remain before achieving clinical readiness (2, 10–14).
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Clinical applications

Artificial intelligence has been employed to predict the most 
common types of skin cancers, melanoma (1) and non-melanoma skin 
cancer (1), through image analysis. In addition, machine learning has 
been used on RNA datasets to develop classifiers that also predict skin 
cancer, as well as the prognosis of skin lesions. Several of these methods 
can be, or have the potential to be, readily deployed by patients, 
primary care practitioners, dermatologists, and dermatopathologists.

Patients

With the rising prevalence of smartphone usage, patients can 
directly screen for and monitor lesions with AI applications. These 
applications can run AI models on patients’ own local devices, which 
ensures the protection of patient data (15). The feasibility of an AI 
model to assist patients’ with self-assessed risk using smartphones has 
been validated with a model that was trained on pictures captured from 
patients’ smartphones, and which exhibited comparable performance 
to general practitioners’ ability to distinguish lower-risk vs. higher-risk 
pigmented lesions (16). Moreover, AI significantly increased the abilities 
of 23 non-medical professionals to correctly determine a diagnosis of 
malignancy from 47.6 to 87.5% without compromising specificity (12). 
In the future, AI models may assist with overseeing and assessing 
changes to lesions as they progress (17) and collaborate with apps that 
allow patients to examine themselves and document moles (18, 19).

Despite progress with these AI models, there is no smartphone 
application that is endorsed on the market in the United States for 
non-professionals to evaluate their lesions as they do not have 
satisfactory performance or generalizability (20). Limitations include 
biases introduced due to the narrow range of lesion types, skin 
pigmentation types, and low number of high-quality curated images 
used in training. Further, inadequate follow-up has been a limitation 
with regards to identifying false negative diagnoses (21). Notably, 
users may not be  adequately protected from the risks of using 
smartphone diagnostic apps by Conformit Europenne (CE) 
certification, which endorsed two apps with flaws (SkinVision and 
TeleSkin’s skinScan app). A prospective trial of SkinVision found low 
sensitivity and specificity for melanoma classification (22). In contrast 
to CE, the US Food and Drug Administration’s (FDA) requirements 
for endorsement are more stringent (21).

Primary care

Artificial intelligence applications can enhance skin cancer 
screening in the primary care setting and streamline referrals to 
dermatologists. Referral data from primary care practitioners to 
teledermatology consultations were used to train a model capable of 
a top-3 accuracy and specificity of 93 and 83%, respectively, given 26 
skin conditions that makeup 80% of encountered primary care cases 
(4). This performance was on par with dermatologists and surpassed 
primary care physicians (PCPs) and nurse practitioners. This type of 
model could assist PCPs in diagnosing patients more accurately and 
broadening their differential diagnoses. In cases in which the top 3 
diagnoses from the model have the same management strategy, 
patients may start treatment while awaiting further workup or 
follow-up with dermatology. Nevertheless, further testing on 

populations with a low prevalence of skin cancer is essential to 
demonstrate efficacy in the broader population (23).

Dermatology

Models have been trained to use electronic health record (EHR) 
data and/or gene sequencing data to predict an individual’s likelihood 
of developing melanoma (24–27) or nonmelanoma skin cancer (27–
31). While AI models could potentially flag patients at high risk of 
skin cancer to be screened, studies are limited by the variability of 
included predictive factors, inconsistent methods of evaluating 
models, and inadequate validation (32). Moreover, EHRs often do not 
include some of the most important risk determinants for skin cancer, 
such as exposure to UV light and the patient’s familial history; the 
omission of such data may result in decreased performance (28).

Artificial intelligence has the potential to supplement 
dermatologists’ diagnostic and treatment capabilities in what is known 
as augmented intelligence (AuI). For diagnosis, AuI might assist 
dermatologists in more effectively managing teledermatology referrals 
(4) and increase the efficacy of in-person visits (33). However, in a 
prospective trial comparing AI to dermatologists in a teledermatology 
setting, dermatologists outperformed the AI (13). Despite AI currently 
underperforming dermatologists, AI could provide a new perspective 
that could still be beneficial as AI and humans exhibit distinct types of 
errors. For instance, models may provide insights into certain images’ 
classification ambiguity, whereas humans are better able to distinguish 
variability in image quality such as blurriness or shadowing (12).

Augmented intelligence can also assist with suggesting clinical 
decisions given inputted images, such as recommending whether a 
lesion warrants excision (34). The integration of AuI into dermatologic 
patient management resulted in a 19.2% reduction in unnecessary 
excisions of benign lesions (35). Although current CNNs’ performance 
has been shown to fall short when compared with using sequential 
dermatoscopic photography in predicting melanoma, AuI may be used 
in the future by dermatologists to evaluate and monitor lesion change 
(36). Of interest, in this study, neither dermatologists nor the CNN had 
satisfactory diagnostic performance levels on baseline images, but both 
dermatologists and CNN had improved performances when follow-up 
images were provided, and the best performance was combining CNN 
and dermatologist assessment together.

Integration of AI into advanced imaging techniques may reduce 
the extent of training necessary to use them (37). One area of 
application is in the detection of the dermal-epidermal junction, 
which is crucial in a non-invasive method of skin cancer diagnosis 
called reflectance confocal microscopy (RCM) imaging (38). 
Furthermore, there are ongoing efforts to analyze RCM images with 
AI (39).

The FDA has not approved any medical devices or algorithms 
based on artificial intelligence in the field of dermatology (40, 41). On 
the other hand, the FotoFinder Moleanalyzer Pro, an AI application 
for dermatology, was approved in the European market. It 
demonstrated performance on par with dermatologists in store-and-
forward dermatology (42) and a prospective diagnostic study (43), 
however, the latter had extensive exclusion criteria, e.g., excluding 
patients of skin type IV and greater. The first randomized controlled 
trial comparing AI skin lesion prediction to dermatologists’ 
assessment reported that AI did not exceed attending dermatologists 
in skin cancer detection (44).
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Dermatopathology

With the growing application of whole slide imaging (WSI) in the 
field of dermatopathology (45), AI can potentially support 
dermatopathologists in several ways, particularly skin cancer recognition. 
Among the AI models trained to detect melanoma from digitized slides 
(5, 46–50), two models were able to match the performance of 
pathologists in an experimental setting. These models were limited in 
that they were only given either a part of (46) or a single (49) hematoxylin 
and eosin (H&E)-stained slide. In contrast, pathologists can utilize 
supplementary data such as immunohistochemistry or relevant patient 
data. However, integrating patient information, such as age, sex, and 
lesion location, into CNN models did not enhance performance (5). One 
limitation to implementing AI in dermatopathology is the unreliable 
prediction that may be made when a model is given an input that differs 
from the training dataset. One potential solution is the use of conformal 
prediction, which has been shown to increase accuracy of prostate biopsy 
diagnosis by flagging unreliable predictions (51).

Studies have been done to evaluate AI’s ability for diagnosing basal 
cell carcinoma (BCC) using WSI (9, 52, 53). Campanella et al. showed 
the ability of a convolutional neural network to achieve 100% sensitivity 
for detecting BCC, on the test set; importantly, a multiple instance 
learning approach was introduced that obviated the necessity of time-
consuming pixel-level slide annotations to distinguish between areas 
with and without disease (9). Kimeswenger et  al. subsequently 
incorporated an “attention” function to draw attention to areas of digital 
slides that include indications of BCC. Interestingly, CNN pattern 
recognition varied from that of pathologists for BCC diagnosis as tissues 
were flagged based on different image regions (53). These CNNs could 
also be  applied to identify and filter slides for Mohs micrographic 
surgery (52). In the setting of rising caseloads, AI can help to decrease 
pathologists’ workload generated by these commonly diagnosed, low 
risk entities. Duschner et al. applied AI to automated diagnosis of BCCs, 
and demonstrated both sensitivity and specificity of over 98%. Notably, 
the model demonstrated successful generalization to samples from 
other centers with similar sensitivity and specificity (54).

Artificial intelligence has also had some success in predicting 
sentinel lymph node status (55), visceral recurrence, and death (56) 
based on histology of primary melanoma tumors. In the future, AI 
could be utilized to identify mitotic figures, delineate tumor margins, 
and determine the results of immunohistochemistry stains; further, 
AI could recommend more immunostaining or genetic panels that 
could be of use diagnostically (57). While AI predictions have not 
been consistently successful for melanoma (58), AI has been 
demonstrated to identify the mutation given a lung adenocarcinoma 
slide that has been stained with H&E (59–61).

Machine learning applied to RNA profiles

While AI in dermatology is most often associated with using deep 
learning techniques on clinical and histological images, machine 
learning methods have been utilized in developing gene expression 
profile (GEP) classifiers for predicting skin cancer diagnosis and 
prognosis. Generally, simpler machine learning models that require 
tuning of fewer parameters compared to more complex neural nets have 
been employed to analyze GEP. They still, however, share the benefits of 
the ability to use iterative learning optimized to find patterns in complex 
non-linear relationships not possible in traditional statistical and linear 

models, assuming sufficient data is available. Some common models 
include many Kernel methods such as support vector machines (SVM) 
or tree-based models, e.g., Random Forest and XGBoost that have often 
been found to produce the best performance for tabular gene expression 
data. These models also often use some method to feature select (62) to 
both maximize performance and find the most relevant features for the 
classification task. This also allows for a better sense of interpretability 
as with fewer features there is the ability to assess their relevance 
individually. Reproducibility is of great concern and has often been the 
critique of many biomarker and classifier studies, since there is often 
little to no overlap in targets, which understandably can lead to general 
skepticism of the results, especially considering the generally small 
sample sizes employed in many studies. Despite this, there has been a 
push to make use of molecular profiling to assist in different aspects of 
melanoma management.

Currently, the GEPs developed for use in melanoma management 
fall into two categories. First, some GEPs are used as a diagnostic tool 
to help determine the malignancy of a pigmented lesion either pre- or 
post-biopsy. Pre-biopsy there is an epidermal tape sampling test that 
can predict melanoma with 94% sensitivity and 69% specificity (63) 
with an improved sensitivity of 97%, when TERT mutation assessment 
is included (64). There are, however, reported limitations to this test 
as it cannot be used on mucous membranes or acral skin and there is 
the possibility of non-actionable results due to insufficient sample 
collected for testing (65). Post-biopsy GEPs can be used to help with 
diagnostically difficult cases such as Spitz nevi, but have poorer 
performance on Spitz melanomas and pediatric patients (66). Machine 
learning has also been applied with success to miRNA profiles to 
differentiate melanomas from nevi (67).

Second, there are GEPs, derived from biopsy material, that are 
used as prognostic tools to stratify the risk of melanoma recurrence 
or metastasis (68), however subsequent management protocols for 
high risk early-stage disease are not in place (68). Despite optimism 
for prognostic use of prognostic GEP classifiers, the expert consensus 
is that there is currently insufficient evidence to support routine use 
(69). The climate, however, is evolving, with new reports incorporating 
additional clinicopathological data together with patient outcomes 
(70). Overall, there remains a lack of consensus on the use of the GEP 
biopsy and tape sampling tests (71, 72). Further studies are needed, 
such as non-interventional retrospective studies, followed by 
prospective interventional trials, but there remains promise that they 
can become additional tools in providers’ arsenal of available tests.

Barriers to clinical implementation

Image quality

Image quality significantly impacts the prediction performance of 
AI computer vision (73). Several factors can result in subpar images, 
including inadequate focus or lighting, color misrepresentations, 
unfavorable angles or framing, obstructing objects, and poor 
resolution. Moreover, while humans can readily ignore items such as 
blurred focus, scale bars, and surgical markings, these artifacts affect 
AI prediction performance (11, 74, 75).

Obtaining consistently high-quality images in the fast-paced 
environment of a clinic presents many challenges. Barriers such as 
limited time, insufficient training, inadequate imaging equipment, and 
other constraints may hinder the process. Guidelines for skin lesion 
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imaging have been suggested to facilitate the capture of high-quality 
images (76, 77). These guidelines include suggestions for adequate 
lighting, background, field of view, image orientation, and color 
calibration. Additional recommendations are suggested for 
photographing skin of color (78).

A comprehensive, multifaceted solution is necessary to enhance 
image quality. Educating dermatology residents in photography might 
contribute to improving image quality in a clinical setting (79). 
Moreover, a study done in United Kingdom primary care facilities 
showed enhanced photo quality when patients were educated with the 
“4 Key Instructions” (Framing—requesting at least one near and one 
distant image; Flash—educating about the use of flash to enhance 
image sharpness, emphasizing not to use it too closely; Focus—
educating patients to give the camera time to auto-focus; Scale—
asking for a comparison like a ruler or a coin) (73). Among 191 digital 
applications for skin imaging, 57% included one or more strategies to 
enhance quality, but it was rare for applications to have more than one 
(80). An immediate feedback feature for image quality shows promise, 
although it is still in the early stages of development (81).

Algorithmic bias and health equity

There is a risk for indiscriminately implemented AI to potentially 
exacerbate health inequities by incorporating pre-existing and newly 
emerging biases (82) (Table 1). Pre-existing biases include pre-coding 
biases in datasets used to train the model or personal biases 
inadvertently introduced by developers. Emergent biases can 
be introduced by relying on models in new or unexpected contexts and 
not adjusting models for new knowledge and shifting cultural norms.

Artificial intelligence models for early melanoma detection have 
relied on large datasets from individuals with mostly lighter pigmented 
skin. While melanoma is more prevalent among individuals with 
lighter skin, those with darker skin frequently come in with a more 
severe stage of disease and experience lower survival rates. An AI 
model trained on lighter skin tones for melanoma prediction had 
lower performance for lesions on darker skin tones (83). The 
International Skin Imaging Collaboration (ISIC) archive, one of the 
most extensive and widely used databases for individuals in the 
United States, Europe, and Australia, and a prospective diagnostic 
accuracy paper comparing an AI model with other noninvasive 
imaging techniques did not include individuals with Fitzpatrick 
phototype III or higher (43, 84). Efforts to collect lesions from 
individuals of all skin tones should be a priority, and transparency in 
the characteristics of training datasets as well as the quality and range 
of disease labels should be disclosed (85).

AI model validation

It is crucial to carefully validate AI models before applying them in 
real-world settings (Table 1). Computational stress testing is necessary 
to guarantee efficacy in actual clinical scenarios (2). Validation should 
be performed using large amounts of external data as determining 
performance solely on internal data has been shown to often lead to 
overestimation (2, 86). The reason for the lower model performance on 
external validation datasets can arise from training data that is not 
representative of the general population or from leakage of additional 

data, either between the training and testing data or from the future 
drift of data (86). Unfortunately, most models are not open code, 
limiting research into the external validation of these models. On the 
other hand, Han et al. share the use of their models publicly, setting a 
standard that should be followed (7, 12, 87). Along with publicly shared 
models, having publicly shared benchmarks such as the melanoma 
classification benchmark (88) and accessible databases (such as 
DataDerm) is crucial for comprehensive validation (89). Few public 
datasets have representation of all skin types. A rigorous testing of 
outcome metrics with and without the support of an AI model in 
randomized controlled trials would be optimal.

Though CNNs routinely and autonomously identify image 
features pertinent for classification, this ability can lead to the 
incorporation of unintended biases. An example of possible bias is the 
use of ink markings (75) or scale bars (74) in melanoma identification. 
It is important to assess whether and how changes to inputted images 
can affect the prediction output. Changes to test include image quality, 
rotation, brightness/contrast adjustments, adversarial noise, and the 
presence of artifacts, such as those aforementioned (2, 10, 74, 75, 90, 
91). Testing for robustness given such uncertainties can assist users in 
understanding the model’s scope and reasons for error (92).

The path to clinical implementation

Given the rapid pace of advancements in AI in the medical field, 
the American Academy of Dermatology (AAD) issued a position 
statement regarding how to integrate augmented intelligence into 
dermatologic clinical settings (93). The AAD underscored the 
importance of high-quality validated models, open transparency to 
patients and providers, and efforts to actively engage stakeholders.

For AI to be broadly accepted in dermatology, studies need to 
demonstrate a significant improvement in health outcomes. The first 
randomized controlled trial of an AI’s ability to augment clinicians’ 
diagnostic accuracy on skin lesions highlighted the potential for AI to 
augment non-dermatologists diagnostic performance in a real-world 
setting, but not that of dermatology residents in training, and found 

TABLE 1 Challenges in AI in dermatology.

Challenges Summary

Model validation Many models fail to have a true external validation set so can 

fail to be representative of the general population. In 

addition, standardized benchmarks that can be used across 

models are not readily available due to limitations with few 

public datasets that serve as good benchmarks.

Quality of data Model performance can be limited by quality of data, which 

can be affected at initial collection through user error 

creating data artifacts or with intrinsic deficiencies of the 

source limiting diversity and creating class imbalances that 

are not accounted for by the model.

Algorithmic bias 

and health equity

Models can contain biases based on the selection of data used 

to train that can affect generalizability to different 

demographics both racial and socioeconomic.

Implementation 

and user 

confidence

Acceptance of AI can be limited not only by governmental 

agencies such as FDA approving use, but also at the clinician and 

patient level where mistrust or uncertainty can dissuade use.
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superior performance by experienced dermatologists—who use 
patient metadata as well as images—compared to the AI model (44). 
It also noted that if the model’s top  3 diagnoses were incorrect, 
trainees’ diagnostic accuracy fell after consulting the AI model, 
highlighting a pitfall of using current AI models.

Increasing access to dermatological care

AI offers hope for increasing health equity through increasing 
access, and democratizing skin screenings. Access to dermatologists 
is a problem, especially in rural areas, where it may take longer for a 
patient to obtain a biopsy of suspected melanoma (94). As of 2018, 
69% of counties in the United  States do not have access to 
dermatologists (95). Further exacerbating the issue, many dermatology 
clinics closed during the COVID-19 pandemic (96). AI-augmented 
teledermatology may be able to enhance accessibility by streamlining 
referrals and reducing waiting times, and it could help increase the 
accessibility in areas with a scarcity of dermatopathologists. AI may 
also help dermatologists more accurately diagnose skin disease in 
patients whose skin is not well-represented in the local population (97).

Human-computer collaboration

Clinicians are indispensable to synthesizing relevant context and 
offering patient counseling and subsequent care. Furthermore, given 
the enhanced accuracy of diagnosis when integrating AI into decision-
making, the future of dermatology will likely entail human-computer 
collaboration (98). Embedding Collective Human Intelligence (CoHI) 
or even swarm intelligence (CoHI with interaction between 
participating humans) as checkpoints within an AI model may help 
overcome the limited ability of AI to contextualize and generalize (99).

When interacting with AI, potential cognitive errors and biases 
may be exacerbated, especially when there is discordance in diagnosis 
between clinicians and AI (100). The use of AI introduces a new kind 
of bias called automation bias, in which humans tend to 
unquestioningly trust automated decisions from AI (100). When 
physicians used AI decision support for reading chest X-rays, 
experienced physicians rated diagnostic advice as lower quality when 
they thought the advice was generated by AI, but not physicians with 
less experience (101). Though rated as less trustworthy, inaccurate 
advice by AI still led to decreased diagnostic accuracy (101). It will 
be important for AI developers and medical educators, the latter when 
teaching AI applications, to take such human factors into account.

Areas of active research

There are several areas of active computational research that are 
anticipated to aid in bringing validated image analysis models to 
clinical use (Table 2).

Federated learning

A problem with training models for clinical use to detect skin 
cancer or other disorders is the limitation in sharing clinical images 

due to privacy concerns and the inherent limitations in collecting 
sufficient images of rare skin cancer types and disorders and of 
different skin pigmentation. The current approach for multi-
institution model training necessitates the forwarding of patient data 
to a centralized location, termed collective data sharing (102). 
Alternatively, federated learning uses a decentralized training system 
in which a shared global model learns collaboratively while keeping 
data locally. Each device’s data comes with its own inherent bias and 
different properties due to demographic variations. Instead of sending 
data to a central server, the model itself travels to each device, learns 
from the locally-stored data, and then updates the global model with 
this newly acquired training. By not sharing the training data across 
devices, federated learning enables the preservation of privacy of 
sensitive data (103). In a study across 10 institutions, the performance 
from federated learning was shown to better than that of a single 
institution model and shown to be comparable to that of collective 
data sharing (102). Moreover, the federated learning approach would 
be  a method to virtually aggregate data on rare skin cancers or 
disorders from different centers, such as Merkel cell cancer, or data 
from patients with rarer subtypes of skin cancers, such as mucosal or 
acral melanoma. An analogy of federated learning is a team of 
dermatologists who visit multiple clinics to learn and share knowledge, 
rather than asking patients to visit a single central hospital to see the 
team. A model trained with federated learning can offer more accurate 
diagnoses on rare skin cancer types and disorders, including lesions 
found on differing skin pigmentations, and still maintain 
patient privacy.

Deploying federated learning faces several challenges. Ensuring 
fairness across different demographic groups and data security while 
optimizing the overall performance of the global model is 
computationally complicated. Establishing computational 
infrastructure capable of seamless communication, such as 
transmission of a model, may require additional IT assistance. These 
obstacles pose a barrier to the practical implementation of federated 
learning (104).

Uncertainty estimation

Whereas many studies on the applications of skin cancer 
classification models have reported high accuracy, these models 
rarely concurrently report uncertainty estimates for the predictions 
and when assessed, models have been found to be overconfident (2). 
As a result, medical practitioners may hesitate to incorporate these 
models into their diagnostic workflow. Uncertainty estimation 
provides a meaningful confidence level, with regards to when to 
trust a model prediction. To safely deploy a computer-aided 
diagnostic system in a clinical setting, it is crucial to incorporate not 
only a model’s prediction but also a confidence score. Clinicians are 
then equipped to decide whether to trust the prediction or 
alternatively disregard the AI prediction and rely on provider 
assessment (94).

Multimodal learning

Most skin disease diagnosis models are trained only on one data 
modality: clinical or histological images or RNA sequence data. 
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However, medical data is inherently multimodal by nature, and 
dermatologists use patient information in addition to clinical images 
to make a diagnosis. Metadata from patients, such as age, ethnicity, 
and anatomic location of lesion, can also be useful to enhance skin 
cancer classification models. Multimodal learning is a technique 
where a single model learns from multiple types of data 
simultaneously (105). One skin disease classifier that integrated up to 
six clinical images and 45 demographic items and medical history to 
classify 26 skin conditions as the primary prediction outperformed 
six primary care physicians and six nurse practitioners (4). Another 
study showed that a model integrating dermatoscopic and 
macroscopic images with three patient metadata variables 

outperformed models with just one image modality for binary and 
multiclass classification setting (106, 107).

Incremental learning

Current skin disease diagnostic models are static, wherein data 
distribution is already known and the target skin diseases are pre-set. 
However, in the clinical setting, as the database size grows over time, 
with the accumulation of new images, a shift in data distribution can 
occur, for example after the inclusion of new skin disease classes, or 
with improved or new devices. Changes or differences in image 

TABLE 2 Future advances in AI.

Method Description

Uses decentralized training where a global model is trained on locally-stored data 

and then updated while preserving the privacy of local data.

To calculate an uncertainty estimate for model predictions so model confidence can 

be interpreted by end user.

Allows the use of multiple types of data to train a combined model to take advantage 

of unique differences in data.

Enables a model to continue learning on a new stream of data.

Model is used to train compressed representations of data so new instances can 

be recreated.

Model uses text based prompt to generate a response based on language based 

learning.
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acquisition tools, such as mobile phone cameras, also can shift dataset 
distribution by changing the quality of images captured. This results 
in the need to adapt models to new images while not degrading model 
performance on the pre-existing data. Incremental learning enables a 
model to continue learning the attributions of new data while 
preserving learned features from the data acquired before; successful 
incremental learning strategies on dermatology images have been 
recently reported (97, 108, 109).

Generative adversarial networks modeling

The ability to synthesize new data that closely resembles real skin 
lesion images can augment training on rare skin diseases and create 
a diverse and balanced dataset (110). While the potential to fill the 
data gaps is promising, models’ performance does not show 
significant improvement when trained on synthesized data (111). The 
stylized images should be used cautiously, so as to not degrade the 
quality or reliability of the dataset and model by adding unintentional 
bias, and also ensure alignment with real-world conditions for 
clinical application (111, 112).

Emerging new model architectures—vision 
transformers

Vision transformer has emerged as an advanced model 
architecture, challenging the traditional dominance of convolutional 
neural networks (CNNs). CNNs have been the default choice for in 
both medical imaging and natural image tasks (113, 114). However, 
inspired by the success of Transformer in natural language processing 
(NLP), researchers have increasingly utilized ViTs or hybrid models 
of CNN and ViT and demonstrated promising results across various 
medical imaging tasks (115, 116). Concurrently, a resurgence of CNN 
is occurring with advanced CNN architectures such as ConveNeXt, 
showcasing competitive performance alongside Transformers in 
natural image task (117). These ongoing explorations and adaptations 
of ViTs address the challenges and uncertainties in deciding on 
model architecture.

Applications of large language model

Large language model is a type of natural language processing 
model that is trained to “understand” and generate human-like text, 
and has potential applications in enhancing clinical decision-making 
and overall patient care. For example, ChatGPT-style LLMs designed 
only for clinical diagnosis can accelerate clinical diagnoses by helping 
patients better understand their medical conditions and communicate 
with doctors remotely (118). Another application of LLM in clinic is 
AI-enabled digital scribes that can record and summarize patients visit 
information for treatment plans and billing purposes, eliminating the 
workload due to medical charting (119, 120). While there are positive 
aspects of LLM utilization for clinical care, there are also concerns such 
as the need for continued oversight of such models. It is essential to 
recognize that LLMs and doctors can complement each other, with 
LLM providing efficiency in processing large amounts of information 

while doctors offer interpretation of the data, emotional intelligence 
and compassion to patients, thus improving patient care (121). 
However, caution should be used when utilizing LLM for medical 
advice. A recent study demonstrated that 4 LLM provided erroneous 
race-based responses to queries designed to detect race-based medical 
misapprehensions (122). To address this, testing of LLMs is critical 
before clinical implementation, and human feedback can help to 
correct errors.

Self-supervised learning

Self-supervised learning offers a promising approach to enhance 
the robustness and generalizability of models by enabling them to 
learn meaningful representations from unlabeled data. Traditionally, 
the efficacy of training deep learning models has relied on access to 
large-scale labeled datasets (123). However, in the medical field, 
acquiring such data is costly and requires specialized expertise. As a 
result, the scarcity of annotated data poses a significant obstacle to the 
development of robust models for various clinical settings. SSL 
addresses this challenge by developing a versatile model capable of 
efficiently adapting to new data distributions with a reduced number 
of labeled data during fine-tuning, while ensuring strong performance 
(124). Thus, SSL is a promising method to bridge the gap between AI 
research in the medical field and its clinical implementation.

Conclusion

Artificial intelligence currently is able to augment 
non-dermatologists’ performance in a synergistic fashion and performs 
at the level of experienced dermatologists in a randomized controlled 
trial assessing skin malignancies. This achievement opens the door to 
aiding primary care physicians’ discriminative triaging of patients to 
dermatologists and likely will decrease referrals for benign lesions, 
thereby freeing up dermatology practices to address true malignancies 
in a timely manner. Similarly, the potential for patients to self-refer for 
lesions concerning for malignancy may be possible in the near future, 
with models that can assess regional anatomic sites for lesions with 
concerning features. Through the implementation of AI, access to 
dermatologic care may become more democratic and accessible to the 
general population, including underserved subpopulations.

Limitations in performance include misdiagnosis by the model 
when assessing out of distribution diagnoses, leading clinicians astray; a 
solution might be for models to provide confidence estimates together 
with diagnostic predictions. A formidable problem in training models is 
the large number of diagnoses in dermatology, including numerous low 
incidence but aggressive malignancies (such a Merkel cell carcinoma, 
microcytic adnexal carcinoma, dermatofibrosarcoma tuberans, and 
angiosarcoma), or low incidence chronic malignancies such as cutaneous 
T cell lymphoma with potential for aggressive progression; one solution 
is federated training through the collaboration of multiple academic 
centers, some of which have specialty clinics focused on these diagnoses; 
or the formation of a central shared databank. In the future, models likely 
will be  utilized to aid experienced dermatologists and 
dermatopathologists, as well as primary care providers and patients, 
particularly after training on multimodal datasets.
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